替换
查找内容:
替换为:
全部替换
插入链接
链接网址:
链接显示标题:
请选择网址类型
点我插入链接
插入文件
文件名称:
文件显示标题:
请选择文件类型
点我插入文件
发现错误 发表观点

原文内容

反馈意见

提交 正在提交..... 反馈历史

复制下面的地址分享给好友

确定 正在提交.....
train

你好,

关闭
提交 重做 重新开始 关闭
跳转
  • 新建同级
  • 新建子级
  • 删除
  • 重命名
选择收藏夹
新建收藏夹
公开

取消 确定

1. 基本信息
姓名:
企业:
职位:
联系方式:
邮箱:
2. 请在此填写您的问题,我们将优先安排答疑
提交

报名成功!
课程观看链接如下:
请添加课程助理微信,获得更多信息:
确认
确定
取消 确认

识林

  • 知识
  • 视频
  • 社区
  • 政策法规
    • 国内药监
    • FDA
    • EU
    • PIC/S
    • WHO
    • ICH
    • 英国MHRA
    • 日本PMDA
    • 加拿大HC
    • 澳大利亚TGA
    • 新加坡HSA
    • 瑞士Swissmedic
    • 韩国MFDS
    • 沙特阿拉伯SFDA
    • 巴西ANVISA
  • 研发注册
    • 概览
    • 监管动态
    • 研究专题
  • 生产质量
    • 概览
    • 监管动态
    • 各国GMP
    • 中国GMP
    • 中国GMP指南(第二版)
    • GMP对比
    • 检查缺陷
    • 研究专题
  • 主题词库
  • 帮助中心
  • 关于识林
    • 识林介绍
    • 识林FAQs
    • 功能介绍
    • 团队诊断
    • 联系我们
  • 30天免登录

    忘记密码?

国际药政每周概要:FDA分布式生产反馈和行动计划报告,临床结局数据收集技术规范指南;EMA免疫功能低下个体疫苗临床试验指南增补概念文件;英国推出AI监管沙盒

首页 > 资讯 > 国际药政每周概要:FDA分布式生产反馈和行动计划报告,临床结局数据收集技术规范指南;EMA免疫功能低下个体疫苗临床试验指南增补概念文件;英国推出AI监管沙盒

页面比对

出自识林

国际药政每周概要:FDA分布式生产反馈和行动计划报告,临床结局数据收集技术规范指南;EMA免疫功能低下个体疫苗临床试验指南增补概念文件;英国推出AI监管沙盒
一周回顾
页面比对
笔记

2023-11-10

跳转到: 导航, 搜索

【监管综合】

11.03【FDA】药品的分布式生产:利益相关方反馈和行动计划

10.30【MHRA】MHRA 将推出针对 AI 开发者的新监管沙盒 AI-Airlock

【注册、审评、审批】

【创新研发与临床】

11.03【EMA】关于制定免疫功能低下个体疫苗临床试验的疫苗临床开发指南增补的概念性文件

11.03【FDA】指南定稿 癌症临床试验中患者报告结局数据的提交

11.03【FDA】指南定稿 运用项目反应理论的临床结局评估的临床试验数据集和文件记录的提交

【GxP 与检查】

【仿制药与生物类似药】

【器械】

【其他】

【监管综合】

11.03【FDA】药品的分布式生产:利益相关方反馈和行动计划

新发布的反馈报告总结了利益相关者在术语、运营模式、中心和主场地、满足产品规格的方法、与其它受监管产品的比较以及国际协调等方面的反馈。利益相关者提出的一般性反馈包括:

-确定了他们寻求有关药品和生物制品 DM 技术的课外监管透明度的领域;
-寻求确保法规和政策与药品和生物制品的 DM 战略相一致;
-寻求明确的监管期望,以促进药品和生物制品 DM 的实施;
-寻求 DM 技术监管的国际协调,以促进 DM 在药品和生物制品中的采纳。

行动计划方面,FDA 重申将“酌情制定指南,以澄清监管不确定的领域”,包括“遵守 21 CFR 211.110 的注意事项,分布式生产满足 CGMP 要求的方法,以及先进生产技术认定计划认定在药品和生物制品中的技术”等指南草案。

FDA 还承诺对可能涵盖 DM 策略的当前监管要求进行审查,并宣布计划与其它监管合作伙伴协调努力,促进 DM 的全球采纳。

参见资讯:FDA 发布关于药品分布式生产的反馈和行动计划报告

10.30【MHRA】MHRA 将推出针对 AI 开发者的新监管沙盒 AI-Airlock

项目遵循稳健的流程,因此软件和人工智能医疗设备的制造商了解并提供确保这些设备在真实世界中奏效所需的内容。该流程遵循“监管沙盒”模式,是世界领先的机制,有助于软件和人工智能医疗设备的安全开发和部署。然后可以分享这些经验教训,帮助提供证据基础,促进对挑战和潜在解决方案的更广泛理解。

AI-Airlock 被设计成一个协作空间,汇集了创新者、监管机构(包括批准机构)、政府、NHS 和学术界的专业知识。AI-Airlock 由英国科学、创新和技术部以及卫生与社会关怀部提供政府资助,预计于2024年4月推出。

参见资讯:英国 MHRA 推出针对 AI 开发者的监管沙盒 AI-Airlock

11.03【FDA】FDA 综述:2023年11月3日

11.03【FDA】新加坡之行所思以及 FDA 改善公共卫生的持续努力

11.02【WHO】WHO 发布更新的结核病治疗目标方案概述和新增的结核病治疗监测和优化目标产品概述

11.02【EMA】COVID-19 疫苗:关键事实 内容更新

11.01【FDA】关于6个月至11岁个体 Moderna COVID-19 疫苗(2023-2024配方)的正确用法用量的重要信息

11.01【FDA】COVID-19 药品和非疫苗生物制品紧急使用授权 页面更新

11.01【FDA】Moderna COVID-19 疫苗 页面更新

11.01【FDA】FDA 的50年大麻研究经验有助于支持未来的大麻药物研发

10.31【EMA】方法学工作组(MWP)修订后的3年综合工作计划草案

10.31【FDA】FDA 综述:2023年10月31日

【注册、审评、审批】

11.03【EMA】EMA 建议企业在2023年11月提交2023年的 Type I 变更

11.01【FDA】FDA 批准帕博利珠单抗联合化疗治疗胆管癌

10.31【FDA】FDA 批准治疗多种炎症性疾病的可互换生物类似药

10.30【FDA】FDA 批准 ivosidenib 治疗骨髓增生异常综合症

10.30【FDA】FDA 批准 toripalimab-tpzi 治疗鼻咽癌

【创新研发与临床】

11.03【EMA】关于制定免疫功能低下个体疫苗临床试验的疫苗临床开发指南增补的概念性文件

疫苗接种是可用于预防免疫功能低下个体感染的最有效的医疗保健措施之一,但与适用于免疫功能正常者的剂量和/或方案相比,有时需要不同的剂量和/或方案。EMA 认为有必要提供一些关于可能合适的免疫功能低下人群亚群的试验指导,以改进将结果外推至其他亚群的情况。此外,考虑在免疫功能低下的个体中设计研究,不仅要记录免疫应答是否低于免疫正常人群,还要提供一些替代剂量和/或方案的指示,以提供足够水平的传染病保护。

EMA 疫苗工作组和应急工作组建议制定疫苗临床评价指南(EMEA/CHMP/VWP/164653/05 Rev.1)的附录以解决这些问题。

11.03【FDA】指南定稿 癌症临床试验中患者报告结局数据的提交

指南补充了 FDA 于 2021 年 6 月发布的指南草案“癌症临床试验中患者报告的核心结局”。与更广泛的 COA 指南类似,PRO 指南详细说明了 FDA 在包含临床数据交换标准联盟 (CDISC) 研究数据表格模型 (SDTM) 和分析数据模型 (ADaM) 数据集的上市前申请中寻找的内容。更具体地说,FDA 概述了其对如何提交标准化数据集内容以及呈现表格和图形的想法。

FDA 建议申办人应尽早与 FDA 讨论支持其药物开发所需的正确 PRO 测量。

11.03【FDA】指南定稿 运用项目反应理论的临床结局评估的临床试验数据集和文件记录的提交

指南详细介绍了申办人在提交使用项目反应理论(IRT)的 COA 信息时应考虑包含在其上市前申请中的技术规范。COA 数据可以来自多个来源,包括临床医生以临床医生报告结局(ClinRO)形式、患者以患者报告结局(PRO)形式、非临床医生观察者以观察者报告结局(ObsRO),以及基于性能评估的性能结局(PerfO)测量。

指南列出了某些术语及其定义,这有助于申办人更好地理解 FDA 想法。指南还详细说明了如何提交临床数据交换标准联盟 (CDISC) 研究数据表格模型 (SDTM) 和分析数据模型 (ADaM) 数据集。这些模型旨在作为申办人在上市前申请中提交 COA 数据提供通用指导。指南深入探讨了申办人在提交 COA 数据时需要提供哪些文档及其时间、申办人应使用的数据集标准以及应如何解决数据缺失等问题的具体细节。

10.31【EMA】关于修订流感疫苗指南非临床和临床模块的概念性文件

11.03【WHO】用于预防或治疗 COVID-19 的单克隆抗体和相关产品的非临床和临床评估

11.02【FDA】个体患者扩展用药知情同意模板

11.01【EMA】A 型和 B 型血友病非替代疗法的临床要求指南

【GxP 与检查】

11.03【FDA】进口禁令 66-79 新增中国 Suzhou Qianyuan Biotechnology Co., Ltd.

11.03【FDA】483 印度 Kilitch Healthcare India Limited

11.01【FDA】483 美国 Pine Pharmaceuticals, LLC

11.01【FDA】483 美国 SterRx, LLC

11.01【FDA】483 印度 NATCO Pharma Limited

11.01【FDA】483 美国 New Vitalis Pharmacy LLC dba New Vitalis Pharmacy

11.01【FDA】进口禁令 66-40 新增瑞士 Soeder AG

10.31【FDA】进口禁令 66-40 新增德国 Sweet Tec GmbH、危地马拉 Industria Cosmetica Kent SA

10.31【FDA】警告信 美国 ALI Pharmaceutical Manufacturing, LLC

10.31【FDA】警告信 美国 WAVi Co.

10.31【FDA】警告信 美国 Samm Solutions, Inc., d.b.a. BTS Research

【仿制药与生物类似药】

11.01【FDA】仿制药计划月度和季度活动报告(2023财年)页面更新

10.31【WHO】新增 他非诺喹 BE 指南

10.31【WHO】新增 普托马尼 BE 指南

10.30【FDA】仿制药计划活动报告 FDARA 第VIII章第807和805节 页面更新

【器械】

11.03【FDA】指南定稿 针对 FDA 拒绝签发某些器械出口证书的决定的请求审查程序

11.02【FDA】指南定稿 临床电子体温计的实施政策

11.01【FDA】指南定稿 已获批上市前批准(PMA)或人道主义器械豁免(HDE)提交的某些补充申请的实施政策

11.01【PMDA】医疗器械 审评报告 新增 SUSMED Med CBT-i App for Insomnia

【其他】

11.03【FDA】FDA 警告消费者注意 Dr. Ergin 的 SugarMD Advanced Glucose Support 中隐藏的药物成分

11.02【FDA】实验室手册 第10节 食品标准和添加剂

识林®版权所有,未经许可不得转载

适用岗位建议:

  • 疫苗研发(研发):必读。关注新型疫苗平台如mRNA疫苗的开发指南。
  • 非临床研究(非临床):必读。了解针对流感疫苗非临床研究的更新要求。
  • 临床研究(临床):必读。掌握临床模块的修订内容,特别是儿科开发计划和免疫反应测定的更新。
  • 注册事务(注册):必读。熟悉注册分类和监管要求的变化,为流感疫苗的市场授权申请做准备。
  • 药物警戒(药物警戒):必读。注意疫苗有效性数据收集和分析的新指南。

适用范围说明:
本文适用于流感疫苗的非临床和临床模块修订,特别关注mRNA等新型疫苗平台,适用于欧盟地区,由EMA的疫苗工作小组和ETF协商一致,适用于Biotech、大型药企、跨国药企等。

文件要点总结:

  1. 新型疫苗平台:新增mRNA疫苗平台的指导,反映COVID-19大流行期间的科学进步。
  2. 疫苗株变更要求:明确了在动物源性疫苗中变更病毒株亚型的要求。
  3. 疫苗效力数据:讨论了按流感季节收集品牌特定和/或整体疫苗效力数据的可行性。
  4. 人类挑战研究:考虑了人类挑战研究在疫苗概念验证和剂量确定中的设计和作用。
  5. 儿科开发计划:重新审视了儿科流感疫苗开发的要求,特别是考虑到自2016年以来的疫苗效力数据。

以上仅为部分要点,请阅读原文,深入理解监管要求。

A study of protective efficacy is not feasible if the disease to be prevented does not occur at
present (e.g. smallpox) or occurs at too low a rate for a study to be performed in a
reasonable timeframe (e.g. anthrax, brucellosis, Q fever).

A study of protective efficacy is not feasible if the disease to be prevented occurs in
unpredictable short-lived outbreaks that, even if large numbers are affected, do not allow
enough time to accrue sufficient cases for an assessment of vaccine efficacy (e.g. some viral
haemorrhagic fevers).

If a study of protective efficacy is not necessary and/or not feasible, the applicant should provide
scientific justification in the Clinical Overview. In such cases, the applicant should also provide a
detailed description of the post-authorisation studies that are planned to evaluate vaccine effectiveness
(see section 4.2.2).

If a study of protective efficacy is considered necessary and feasible, the applicant should provide a
detailed description of the study design in the Clinical Overview. The design of the study will be
influenced by the incidence and characteristics of the infectious disease that is to be prevented. The
study should be designed to provide a reliable estimate of vaccine efficacy with sufficient precision
and should be conducted in a population that is representative of the target population for the vaccine.

The study should be designed to evaluate the protective efficacy of the vaccine against the disease(s)
to be prevented. The primary efficacy variable should be based on a pre-defined case definition (see
below). The study should also evaluate the protective efficacy of the vaccine against other clinically
relevant endpoints (e.g. infection, severe disease, hospitalisation and death). The study should
evaluate the duration of protection and the need for booster doses (see section 4.1.1).

The study should be designed to evaluate the protective efficacy of the vaccine in various subgroups of
the study population (e.g. age groups, ethnic groups, previous immunisation histories). The study
should also evaluate the protective efficacy of the vaccine against various strains/serotypes of the
infectious agent.

The study should be designed to evaluate the safety of the vaccine in the study population. The study
should also evaluate the immunogenicity of the vaccine in a subset of the study population (see section
4.1.1).

  • Randomised controlled trials

The most reliable method for evaluating the protective efficacy of a vaccine is a randomised
controlled trial (RCT). The study should be designed to minimise bias and confounding. The study
should be conducted in a population that is representative of the target population for the vaccine.

The study should be designed to evaluate the protective efficacy of the vaccine against the disease(s)
to be prevented. The primary efficacy variable should be based on a pre-defined case definition (see
below). The study should also evaluate the protective efficacy of the vaccine against other clinically
relevant endpoints (e.g. infection, severe disease, hospitalisation and death). The study should
evaluate the duration of protection and the need for booster doses (see section 4.1.1).

The study should be designed to evaluate the protective efficacy of the vaccine in various subgroups of
the study population (e.g. age groups, ethnic groups, previous immunisation histories). The study
should also evaluate the protective efficacy of the vaccine against various strains/serotypes of the
infectious agent.

The study should be designed to evaluate the safety of the vaccine in the study population. The study
should also evaluate the immunogenicity of the vaccine in a subset of the study population (see section
4.1.1).



  • Secondary attack rate studies

Secondary attack rate (SAR) studies are sometimes used when the infection to be prevented is known
or expected to be associated with a relatively high incidence of secondary cases. In these studies, an
assumption is made that vaccinees and non-vaccinees have an equal chance of acquiring the infection
from the index case. The preferred design would be to randomise the direct contacts, and sometimes
secondary contacts, of a case on an individual basis to receive or not receive the candidate vaccine.
Alternatives could include randomising individuals to immediate or delayed vaccination or randomising
all the members of each ring to the same arm, i.e. a cluster-randomised approach.

  • Populations for analysis

The primary analysis should be based on the intent-to-treat (ITT) population, defined as all randomised
subjects who receive at least one dose of study vaccine. The analysis should also be performed in the
per-protocol (PP) population, defined as all randomised subjects who complete the study according to
the protocol. The analysis should also be performed in various subgroups of the study population (e.g.
age groups, ethnic groups, previous immunisation histories).

  • Clinical endpoints

The primary efficacy variable should be based on a pre-defined case definition (see below). The study
should also evaluate the protective efficacy of the vaccine against other clinically relevant endpoints
(e.g. infection, severe disease, hospitalisation and death). The study should evaluate the duration of
protection and the need for booster doses (see section 4.1.1).

  • Case definition

The case definition should be based on clinical signs and symptoms typical of the infectious disease
together with laboratory confirmation of the aetiology. The laboratory methods used to confirm the
diagnosis should be pre-defined and justified. If there are commercially available tests, the choice of
laboratory method(s) should be based on the reported performance characteristics (i.e. the sensitivity
and specificity of the assay and whether it is deemed suitable for the trial population). In some cases,
there may be interest in selecting an assay that can detect additional pathogens that may co-infect with
the target pathogen and possibly affect the severity or course of the disease. It may also be necessary
to apply additional assays to detect such organisms if this is considered important for interpretation of
the trial results.

On occasion, such as when there are no commercially available tests available with satisfactory
performance characteristics, it may be appropriate to use experimental laboratory methods for
establishing the presence of infection. In such cases, every effort should be made during the clinical
development programme to evaluate the sensitivity, specificity and reproducibility of the methods
used. If the case definition is based on histological findings, the criteria for staging and progression
should be pre-defined in the protocol and it is recommended that there is a quality control system in
place and/or secondary readings conducted at an expert central laboratory facility.

If an organism causes disease of variable severity or a range of clinical presentations (e.g. life-
threatening invasive infections as well as localised infections) the clinical features of the case definition
should be selected in accordance with the proposed indication(s). In these instances, separate efficacy
trials using different case definitions may be necessary to support specific indications (e.g. prevention
of invasive pneumococcal disease vs. prevention of pneumococcal otitis media). In addition, for some
vaccines it may be important to compare the severity of vaccine breakthrough cases with cases that
occur in the control group to determine whether prior vaccination ameliorates or possibly enhances
the severity of the disease.



  • Case detection

It is usual that there is active case ascertainment at least up to the time of conduct of the primary
analysis. If there is to be further follow-up after the primary analysis the decision to switch to passive
case ascertainment should consider the importance of obtaining reliable estimates of vaccine efficacy
in the longer term and information on the characteristics of cases that occur in previously vaccinated
and unvaccinated subjects over time.

When the primary endpoint is laboratory-confirmed clinical disease, the protocol should list the clinical
signs and/or symptoms that trigger contact between trial subjects and trial site staff or designated
healthcare facilities participating in the trial so that appropriate laboratory testing can be conducted to
confirm the case. Regular personal or non-personal contact with trial staff may also be used to
determine whether there have been any recent clinical signs or symptoms of potential relevance and to
determine whether cases may have been missed. If any cases bypass the designated trial healthcare
facilities and present elsewhere, attempts should be made to retrieve available data that could be used
to establish whether the case definition was met.

If the primary endpoint is not a clinically manifest infection, trial visits should be sufficiently frequent
to obtain the laboratory data of importance. Every effort should be made to minimize numbers that are
lost to follow-up and to conduct trial visits within protocol-defined windows.

4.2.2. Vaccine effectiveness

Estimates of vaccine effectiveness reflect direct (vaccine induced) and indirect (population related)
protection during routine use. Vaccine effectiveness may be estimated from studies that describe the
occurrence of the disease to be prevented in the vaccinated target population over time. For example,
these may be observational cohort studies, case-control or case-cohort studies. Alternatively,
effectiveness may be estimated from data collected during phased (e.g. in sequential age or risk
groups) introduction of the vaccine into the target population and on occasion, using other study
designs, disease surveillance networks or disease registries.

Vaccine effectiveness studies are not always necessary but may be particularly useful in some
situations and/or to address certain issues, including but not limited to the following:

  • Authorisation was based on nonclinical efficacy data and a comparison of immune responses
    between protected animals and vaccinated humans and/or on a human challenge trial;

  • It is not known how long protection will last after the primary series and/or after post-primary
    dose(s);

  • It is proposed to use the data collected to address long-term protection to support
    identification of an ICP;

  • There are unanswered questions regarding the efficacy of a vaccine against a wide range of
    pathogen subtypes;

  • There are scientific reasons to suspect that an estimate of vaccine efficacy documented in a
    pre-authorisation trial may not be widely applicable to other populations (e.g. to subjects who
    are resident in different endemic or non-endemic regions);

  • Different vaccine implementation strategies are in use in different countries or regions that
    may impact on the estimate of vaccine effectiveness (e.g. when introduction of routine use in
    infants is accompanied by a catch-up programme in older subjects and the upper age of the
    catch-up). In these instances, estimates of vaccine effectiveness obtained using different
    strategies can inform the optimal strategy to achieve rapid and efficient control of the disease;

  • There is reason to suspect that widespread use of a vaccine could result in a change in the
    subtypes of a pathogen causing disease compared to the pre-vaccination era.



Vaccine effectiveness studies require a suitable infrastructure to be in place for case ascertainment and
confirmation of cases in accordance with clinical and laboratory criteria and it may not be possible to
obtain reliable data in all countries or regions. In addition, for some infectious diseases an estimate of
vaccine effectiveness is possible only in case of a naturally occurring epidemic or a deliberate release
of a pathogen in the context of bioterrorism. Furthermore, the conduct of a vaccine effectiveness study
requires that a policy decision has been made to vaccinate a sufficiently large population to support the
analysis.

Whenever it is perceived that valuable information could be gained from conducting a vaccine
effectiveness study it is important that plans are in place to enable its initiation whenever a suitable
opportunity arises in the post-authorisation period.

The role of the licence holder in designing vaccine effectiveness studies and specifying the target of,
and the population for analysis, generating protocols, and collecting and analysing the data requires
consideration on a case by case basis. In most cases, unless the incidence of the infectious disease is
very high in some regions so that a relatively small and short study is possible, a study sponsored by
the licence holder is not a practical undertaking. The only feasible way to evaluate vaccine
effectiveness is often from studies put in place by public health authorities when initiating large
vaccination programmes. Nevertheless, licence holders have a responsibility to ensure that relevant
data made available to them and/or reported in the literature from non-sponsored studies are reported
to EU Competent Authorities. Consideration should be given to updating the SmPC if the results have
clear implications for the advice given (e.g. on the need for additional doses to maintain protection).

4.3. Special considerations for vaccine development

4.3.1. Immune interference

  • Vaccines that contain more than one antigen

The inclusion of multiple antigens in a vaccine may lead to immune interference (i.e. enhancement or
suppression of immune responses to one or more of the antigens). The potential for immune
interference should be evaluated in clinical studies that compare immune responses to the individual
antigens when given separately and when given as components of the combined vaccine. The design
and interpretation of such studies must be tailored to the antigens involved and should take into
account any relevant experience about the possible effects of their combination.

  • Concomitant administration of vaccines

The concomitant administration of vaccines may lead to immune interference (i.e. enhancement or
suppression of immune responses to one or more of the antigens). The potential for immune
interference should be evaluated in clinical studies that compare immune responses to the individual
antigens when given separately and when given concomitantly. The design and interpretation of such
studies must be tailored to the antigens involved and should take into account any relevant experience
about the possible effects of their co-administration.

For some vaccines, such as those intended for the primary series in infants, it may be necessary to
ensure that all subjects in a clinical trial receive all the required antigens before reaching a certain age.
To address this need, trials may need to compare concomitant administration with separate
administrations made in a staggered fashion (e.g. to compare concomitant administration at 2 and 4
months with administration of routine infant vaccines at 2 and 4 months and the candidate vaccine at
3 and 5 months). In older age groups, it is more likely possible to find populations in which coadministration can be compared with separate administrations since it may be less critical to achieve
protection against all antigens in a short timeframe. For some types of vaccine, such as those generally
given before travel, it would also be important to assess immune interference at the most concentrated
schedule that might be needed.



If any co-administration studies identify important reductions in immune responses, further trials could
explore the minimum dose interval that does not lead to any impact.

4.3.2. Cross-reacting immune responses

The immune response to an antigen may cross-react with antigen(s) of one or more other species or
subtypes within a species. The potential for cross-reacting immune responses should be evaluated in
clinical studies that compare immune responses to the individual antigens when given separately and
when given as components of the combined vaccine or when given concomitantly. The design and
interpretation of such studies must be tailored to the antigens involved and should take into account
any relevant experience about the possible effects of their combination or co-administration.

4.3.3. Using different vaccines to prime and to boost

The use of different vaccines to prime and to boost may lead to immune interference (i.e.
enhancement or suppression of immune responses to one or more of the antigens). The potential for
immune interference should be evaluated in clinical studies that compare immune responses to the
individual antigens when given as a homologous prime-boost regimen and when given as a
heterologous prime-boost regimen. The design and interpretation of such studies must be tailored to
the antigens involved and should take into account any relevant experience about the possible effects of
their combination or co-administration.

4.3.4. Vaccine lots and lot-to-lot consistency studies

The manufacturing process for vaccines is complex and may lead to variability in the final product. The
potential for variability should be evaluated in clinical studies that compare immune responses to the
individual antigens when given as components of different lots of the vaccine. The design and
interpretation of such studies must be tailored to the antigens involved and should take into account
any relevant experience about the possible effects of lot-to-lot variability.

A lot-to-lot consistency trial is not routinely required but may be considered useful under certain
circumstances that should be considered on a case by case basis. If such a trial is conducted it is
important to consider and justify the number of lots to be compared and the method of lot selection
(e.g. consecutively produced or chosen at random). Careful consideration needs to be given to the
primary immune response endpoint and the pre-defined acceptance criteria.

It is recommended that several lots of the candidate vaccine with a formulation comparable to that of
the final product intended for marketing should be tested during the clinical development programme.
If this is not possible due to late stage manufacturing changes, the sponsor should justify the
relevance of the clinical trial data to the lots intended for marketing based on quality attributes and/or
should conduct a clinical comparison between lots.

4.3.5. Bridging studies

Bridging studies may be used to extrapolate data from one population to another (e.g. from adults to
children, from one ethnic group to another, from one geographical region to another). The design and
interpretation of such studies must be tailored to the antigens involved and should take into account
any relevant experience about the possible effects of the population differences.

4.3.6. Circumstances in which approval might be based on very limited data

In some circumstances, it may be possible to generate only very limited data for new vaccines intended
to prevent rare infections that carry considerable morbidity and mortality. The extent of the data that
might be acceptable to support a marketing authorisation requires consideration on a case by case
basis. Applicants are advised to seek scientific advice from EU Competent Authorities at an early
stage.

4.4 Clinical safety and pharmacovigilance requirements



The extent of the safety data that can be provided pre-authorisation will depend on the overall content
of the clinical development programme, such as whether or not protective efficacy studies have been
performed. There are also some special considerations for the collection of vaccine safety data
depending on such factors as route of administration, recording of solicited signs and symptoms in
addition to all other adverse events, definitions of some adverse events and the determination of their
relationship to vaccination. Detailed guidance on post-authorisation vaccine pharmacovigilance will
be provided in a separate guideline.

REFERENCES (SCIENTIFIC AND / OR LEGAL)

  1. Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on
    the Community code relating to medicinal products for human use, as amended.

  2. Commission Directive 2003/63/EC of 25 June 2003 amending Directive 2001/83/EC of the
    European Parliament and of the Council on the Community code relating to medicinal products
    for human use.

  3. Note for Guidance on Clinical Evaluation of New Vaccines (CPMP/EWP/463/97).

  4. Note for Guidance on Preclinical Pharmacological and Toxicological Testing of Vaccines
    (CPMP/SWP/465/95).

  5. Note for Guidance on the Choice of the Non-Inferiority Margin (CHMP/EWP/2158/2005).

  6. Guideline on Similar Biological Medicinal Products Containing Biotechnology-Derived Proteins
    as Active Substance: Non-Clinical and Clinical Issues (EMEA/42832/2005).

  7. Note for Guidance on Statistical Principles for Clinical Trials (CPMP/ICH/363/96).

  8. Note for Guidance on Planning Pharmacovigilance Activities (CPMP/ICH/5716/03).

  9. Note for Guidance on Clinical Safety Data Management: Definitions and Standards for
    Expedited Reporting (CPMP/ICH/377/95).

  10. Note for Guidance on General Considerations for Clinical Trials (CPMP/ICH/291/95).

  11. Note for Guidance on Clinical Investigation of Medicinal Products in the Paediatric
    Population (CPMP/ICH/2711/99).

  12. Note for Guidance on Studies in Support of Special Populations: Geriatrics (CPMP/ICH/379/95).

  13. Note for Guidance on Influenza Vaccines (CPMP/BWP/214/96).

  14. Note for Guidance on Live Recombinant Viral Vaccines (CPMP/BWP/3088/99).

  15. Note for Guidance on Validation of Analytical Procedures: Text and Methodology
    (CPMP/ICH/381/95).

  16. Note for Guidance on Missing Data in Confirmatory Clinical Trials (CPMP/EWP/1776/99).

  17. Note for Guidance on Switching between Superiority and Non-Inferiority (CPMP/EWP/482/99).

  18. Note for Guidance on Multiplicity Issues in Clinical Trials (CPMP/EWP/908/99).

  19. Note for Guidance on Application with 1. Meta-Analyses 2. One Pivotal Study (CPMP/EWP/2330/99).

  20. Note for Guidance on Adjustment for Baseline Covariates in Clinical Trials (CPMP/EWP/2863/99).

  21. Note for Guidance on Investigation of Subgroups in Confirmatory Clinical Trials
    (CPMP/EWP/3094/02).

  22. Reflection Paper on Methodological Issues in Confirmatory Clinical Trials Planned with an
    Adaptive Design (CHMP/EWP/2459/02).

  23. Guidance on Format of the Risk-Management Plan (RMP) in the EU – in Integrated Format
    (EMEA/192632/2006).

  24. Note for Guidance on Risk Management Systems for Medicinal Products for Human Use
    (EMEA/CHMP/96268/2005).

  25. Note for Guidance on Good Pharmacovigilance Practices (GVP) (EMEA/813938/2005).

  26. Note for Guidance on Good Pharmacovigilance Practices (GVP) Annex I - Definitions
    (EMEA/876333/2006).

  27. Note for Guidance on Good Pharmacovigilance Practices (GVP) Module V – Risk Management
    Systems (EMEA/838713/2005).

适用岗位:

  • 临床(Clinical):必读。在设计癌症临床试验时,应考虑核心患者报告结果(PRO)的收集频率、工具选择和试验设计,以确保数据的质量和合规性。
  • 注册(Regulatory Affairs):必读。需要理解FDA对于癌症临床试验中PRO的具体要求,以确保提交的数据满足监管机构的标准。
  • 研发(R&D):必读。在开发抗癌疗法时,应考虑PRO数据对产品效益/风险评估的贡献,并选择合适的PRO工具。

工作建议:

  • 临床:在设计试验方案时,应明确PRO的评估频率和工具选择,以及如何处理缺失数据和分析PRO结果的预设计划。
  • 注册:与FDA沟通时,应准备好对所选PRO工具的支持数据和文献,并讨论试验设计和标签考虑。
  • 研发:在抗癌疗法的开发过程中,应考虑PRO数据如何补充其他临床结果评估,并选择能够准确反映患者体验的PRO工具。

适用范围:
本文适用于化学药和生物制品中的抗癌疗法,特别针对那些旨在证明对生存、肿瘤反应或恶性肿瘤进展延迟有影响的注册试验。适用于美国FDA监管下的Biotech、大型药企、跨国药企以及CRO和CDMO等企业类别。

要点总结:
本指南草案提供了关于在癌症临床试验中收集核心患者报告结果(PRO)的建议,强调了选择合适的PRO工具的重要性,这些工具需要被明确定义且可靠,以确保结果的准确性和非误导性。FDA建议收集和单独分析包括疾病相关症状、症状性不良事件、总体副作用影响总结度量、身体功能和角色功能在内的核心PRO。此外,还应考虑试验设计中的评估频率和其他因素,如缺失数据的处理和PRO结果的解释。在标签考虑方面,如果试验设计和执行得当,工具在特定使用情境下的优势和局限性,以及提交数据的质量足够,可以将PRO数据包含在产品标签中。FDA不认可任何特定的PRO测量工具,且文档中的例子仅作为说明,不应被视为背书。

以上仅为部分要点,请阅读原文,深入理解监管要求。

适用岗位及工作建议:

  • RA(注册):必读。需了解FDA对PMA和HDE补充申请的执行政策,以确保注册流程合规。
  • QA(质量管理):必读。应根据政策调整质量控制流程,确保符合FDA的最新要求。
  • 研发:必读。在产品开发阶段需考虑FDA政策,以确保产品符合规定。

适用范围:
本文适用于已获得FDA批准的PMA或HDE的医疗器械补充申请,涉及的药品类型为医疗器械,注册分类包括创新医疗器械和人道主义医疗器械,发布机构为美国FDA,适用于Biotech、大型药企、跨国药企等各类企业。

文件要点总结:

  1. 补充申请政策更新:明确了FDA对于已获批PMA或HDE的医疗器械补充申请的执行政策,强调了政策的更新和变化。
  2. 合规性要求:规定了补充申请必须遵守的合规性要求,以确保医疗器械的安全性和有效性。
  3. 执行灵活性:鼓励在不违反法规的前提下,对补充申请采取一定的执行灵活性。
  4. 监管透明度:强调了提高监管透明度,以便企业更好地理解和遵守FDA的规定。
  5. 政策实施与监督:详细说明了政策的实施步骤和监督机制,以确保政策得到有效执行。

以上仅为部分要点,请阅读原文,深入理解监管要求。

适用岗位:

  • 必读岗位:临床(Clinical)、注册(Regulatory Affairs)、生物统计(Biostatistics)
    • 临床:需确保IRT-based COA的实施与数据收集符合FDA指南要求,特别是在CAT环境下的项目选择和终止标准。
    • 注册:在提交IND和NDA时,需包含所有必要的COA文档和数据集,确保与FDA的沟通和协议符合指南规定。
    • 生物统计:负责IRT模型的实施和参数估计,需确保分析方法和结果符合技术规范。

适用范围:
本文适用于使用项目反应理论(IRT)的临床结局评估(COA)数据提交,包括固定形式COA和基于IRT的计算机自适应测试(CAT)。适用于在美国进行注册的化学药和生物制品,包括创新药和仿制药,由FDA CDER发布,适用于Biotech、大型药企、跨国药企以及CRO和CDMO等企业类别。

要点总结:
本文提供了使用IRT的COA数据提交的详细技术规范,强调了IRT模型在固定形式COA和CAT中的应用。文档详细说明了需要提交给FDA的COA文档内容和时机,包括COA的名称、版本、版权信息、所有条目和响应选项、IRT参数、评分细节等。特别指出,对于CAT,需要提交项目选择或路由算法的细节、起始标准和终止标准。文档还强调了与FDA就试验设计或实施问题进行沟通的重要性,这些问题可能会影响数据集的内容。此外,文档提供了SDTM和ADaM数据集的规范,包括项目数据集、问卷数据集和试验总结数据集的具体要求,以及如何处理缺失数据和未收集的数据。最后,文档鼓励申办方在IND阶段与FDA讨论并达成一致,以确保提交的数据符合FDA的要求。

以上仅为部分要点,请阅读原文,深入理解监管要求。

适用岗位:

  • 临床(Clinical):必读。需理解患者报告结果(PRO)数据的收集、处理和分析方法,确保临床试验设计和执行符合FDA指南。
  • 注册(Reg):必读。需掌握PRO数据提交的技术规格,以便在药品上市申请中正确提交PRO数据。
  • 生物统计(Biostat):必读。负责PRO数据的分析和解释,需按照指南要求设计统计分析计划。

工作建议:

  • 临床:在设计临床试验时,应特别关注PRO数据的收集时间点和方式,确保数据的完整性和准确性。
  • 注册:在准备药品上市申请时,应确保所有PRO数据的提交符合本指南的技术规格要求。
  • 生物统计:在分析PRO数据时,应遵循指南中关于处理缺失数据和突发事件的方法,确保分析结果的科学性和合理性。

适用范围:
本文适用于美国FDA管辖范围内的化学药和生物制品,特别针对创新药或仿制药、生物类似药的肿瘤临床试验中患者报告结局(PRO)数据的提交。适用于Biotech、大型药企、跨国药企以及CRO和CDMO等各类企业。

要点总结:
本指南提供了在肿瘤临床试验中提交患者报告结局(PRO)数据的详细技术规格,旨在标准化PRO数据的提交流程,以便FDA审查。强调了PRO数据对于评估药物的临床效益和安全性至关重要,因此需要详细记录和分析。指南详细描述了如何使用CDISC标准(如SDTM和ADaM)来构建和提交PRO数据集,并提供了关于如何处理缺失数据和突发事件的具体指导。此外,还强调了与FDA早期沟通的重要性,以便就PRO测量工具的选择、数据收集和分析方法达成一致。指南还提供了一些推荐的表格和图形,以便于展示PRO数据的完整性、分布和变化,以及医疗资源使用情况。

以上仅为部分要点,请阅读原文,深入理解监管要求。

取自“https://lib.shilinx.com/wiki/index.php?title=%E5%9B%BD%E9%99%85%E8%8D%AF%E6%94%BF%E6%AF%8F%E5%91%A8%E6%A6%82%E8%A6%81%EF%BC%9AFDA%E5%88%86%E5%B8%83%E5%BC%8F%E7%94%9F%E4%BA%A7%E5%8F%8D%E9%A6%88%E5%92%8C%E8%A1%8C%E5%8A%A8%E8%AE%A1%E5%88%92%E6%8A%A5%E5%91%8A%EF%BC%8C%E4%B8%B4%E5%BA%8A%E7%BB%93%E5%B1%80%E6%95%B0%E6%8D%AE%E6%94%B6%E9%9B%86%E6%8A%80%E6%9C%AF%E8%A7%84%E8%8C%83%E6%8C%87%E5%8D%97%EF%BC%9BEMA%E5%85%8D%E7%96%AB%E5%8A%9F%E8%83%BD%E4%BD%8E%E4%B8%8B%E4%B8%AA%E4%BD%93%E7%96%AB%E8%8B%97%E4%B8%B4%E5%BA%8A%E8%AF%95%E9%AA%8C%E6%8C%87%E5%8D%97%E5%A2%9E%E8%A1%A5%E6%A6%82%E5%BF%B5%E6%96%87%E4%BB%B6%EF%BC%9B%E8%8B%B1%E5%9B%BD%E6%8E%A8%E5%87%BAAI%E7%9B%91%E7%AE%A1%E6%B2%99%E7%9B%92”
上一页: 【识林主题词】新增:致突变杂质,对照组,残差;修订:MAH,剂型,获益风险评估,RMAT,盲法
下一页: ICH_大会采纳病毒安全性评价和分析方法验证开发指南
相关内容
相关新闻
  • 国际药政每周概要:FDA 修订 ...
  • 国际药政每周概要:FDA 创新...
  • 国际药政每周概要:FDA 仿制...
  • 国际药政每周概要:FDA REMS...
  • 国际药政每周概要:FDA IT战...
热点新闻
  • 2025年全球主要监管机构药品法...
  • 近期重点483和警告信概要,识...
  • 【直播预告】2025年12月暨年度...
  • 创新药的中美双报
  • 从2025看2026:制药业 AI 应...

 反馈意见

Copyright ©2011-2026 shilinx.com All Rights Reserved.
识林网站版权所有 京ICP备12018650号-2 (京)网药械信息备字(2022)第00078号
请登录APP查看
打开APP